A RADAR-BASED RAIN RATE PREDICTION USING RTR NOWCASTING PRODUCT COMPARED TO RAINFALL ESTIMATION PRODUCT OF SRI ON FLOOD EVENT ACROSS PALEMBANG ON 12 - 13 NOVEMBER 2018

Authors

  • Anistia M Hidayat
  • Diar Aofany
  • Dinda R Arfianti
  • Imma Redha Nugraheni
  • Abdullah Ali

Keywords:

flood, torrential rain, nowcasting, RTR, SRI

Abstract

Palembang is one of flood prone-areas in Indonesia. Twenty-four cases of flood have recorded during 2017–2018 and have tendency to increase throughout the year starting from 1972. Regarding to this issue, we consider a novel approach on utilizing Rain Tracking (RTR) product to estimate the intensity and distribution of rainfall fields in near-future (nowcasting). The synoptic report of Meteorological Station Sultan Mahmud Badaruddin II Palembang showed that torrential rain occured in November 12th 2019, around 14.00-18.00 UTC. Analysis of CAPPI and SSA products shows a pattern of convective cloud distribution with maximum reflectivity in its storm core reach up to 58 dBZ, spread over research sites at 16.10 UTC and considered as mature stage. MLVCUT (dBZ) analysis on the mature stage shows that the maximum reflectivity value is 48 dBZ with peak reach up to 6,15 km. While, analysis on the VVP products shows strong updraft pattern with maximum velocity of 9,25 m/s and strong downdraft reach up to -8,27 m/s. Prediction of the intensity and rainfall fields distribution using RTR product shows a good approximation compared to the observed rainfall intensity measured by ARG, with absolute deviation values ranges between 1.24 – 14.76 mm/hour. While, the difference in rainfall intensity between SRI and ARG products relatively has larger deviation, ranges between 0.92 - 24.53 mm/hour.

References

IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Lassa, J. A. 2012. Emerging ‘Agricultural Involution’ in Indonesia: Impact of Natural Hazards and Climate Extremes on Agricultural Crops and Food System. In Y. Sawada and S. Oum, eds. Economic and Welfare Impacts of Disasters in East Asia and Policy Responses. ERIA Research Project Report 2011–8. Jakarta: ERIA. pp. 601–640.
Triansyah, Y. 2018. Diguyur Hujan Semalaman, Ini 19 Titik Banjir di Kota Palembang dan 5 Titik Paling Parah [online]. http://palembang.tribunnews.com/2018/11/13/diguyur-hujan-semalaman-ini-19-titik-banjir-di-kota-palembang-dan-5-tempat-paling-parah, diakses tanggal 7 Desember 2018.
James, W., Robinson, C. G., Bell, J. F. 1993. Radar assisted real – time flood forecasting. J. of Water Resour. Plannn. and Management, 119(1): 32 – 44.
Paski, J. A. I., Budi, F. S., Pertiwi, D. A. S. 2016. Analisis dinamika atmosfer kejadian hujan ekstrim memanfaatkan citra radar, satelit, dan model WRF. Jurnal Meteorologi Klimatologi dan Geofisika, 2(2): 251 – 261.
Permana, P. A. D. dan Fachrurrozi, M. 2016. Pemanfaatan Data Radar Cuaca untuk Analisis Kejadian Banjir di Wilayah Kediri, NTB (Studi kasus 2 Mei 2015). Prosiding Seminar Hari Meteorologi Dunia, pp. 309 – 315, ISBN: 978-602-60274-3-6.
Ariyanti, D. A., Asmarani, D., Sa’adah, U. 2016. Identifikasi Awan Cumulonimbus dengan Citra Radar Cuaca Saat Hujan Lebat di Jakarta (Studi kasus tanggal 20 April 2016). Prosiding Seminar Nasional Penginderaan Jauh, pp. 988 – 997, ISBN: 978-979-1458-99-3.
Rosenfeld, D., B. Wolff, D.p Atlas. 1993. General probability-matched relationship between radar reflectivity and rain rate. J. App. Meteor., 32, 50 – 72.
Gamache, J.F. dan Houze Jr., R.A. 1982. Mesoscale air motions associated with a tropical squall line. American Meteorologi Society, vol. 110, pp 118-135.
Widomurti, L. 2017. Penentuan rentang Video Integrator Processor (VIP) level curah hujan berdasar klasifikasi awan pada pengamatan radar cuaca. Skripsi. Tangerang Selatan: Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.
Nzeukou, A. dan Sauvageot, H. 2004. Raindrop size distribution and radar parameters at Cape Verde. J. of Applied Meteorology, vol. 43, pp 90-105.
Wardoyo, E. 2017. Radar Meteorologi: Pengantar Aplikasi Meteorologi. Badan Meteorologi Klimatologi dan Geofisika. Jakarta.
Szoke E J, C K Mueller, J W Wilson, E J Zipser. 1985. Development of convection and severe weather along outflow boundaries in Northeast Colorado: Diagnosing the above-surface environment with a mobile sounding system. Preprints, 14th Conf. on Severe Local storms, Indianapolis Amer. Meteor. Soc. 386-89.
Kollias, P., Albrecth, B. A., Lhermite, R., Savtchenko, A. 2001. Radar observation of updraft, downdraft, and turbulence in fair-weather cumuli. J. of the atmospheric sciences, vol. 58 pp. 1750 – 1766.
Byers, H. R. dan Hull, E. C. 1949. Inflow patterns of thunderstorm as shown by winds alofts. Bulletin American Meteorological Society, 30(3): 90 – 96.
Byers, H. R. dan Braham, R. R. 1949. The thunderstorm. U.S. Dept. of Commerce, 287 pp.
SELEX, Gematronik. 2018. Software Manual Rainbow 5: Products &Algorithms. Jerman: Leonardo Germany GmbH.
Kusjantho, A. 2018. Verifikasi Produk Hidrologi Radar Cuaca Gematronik untuk Estimasi Curah Hujan di Wilayah Lombok Periode Oktober – Desember 2016. Skripsi. Tangerang Selatan: Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.

Published

2019-09-13

How to Cite

Hidayat, A. M., Aofany, D., Arfianti, D. R., Nugraheni, I. R., & Ali, A. (2019). A RADAR-BASED RAIN RATE PREDICTION USING RTR NOWCASTING PRODUCT COMPARED TO RAINFALL ESTIMATION PRODUCT OF SRI ON FLOOD EVENT ACROSS PALEMBANG ON 12 - 13 NOVEMBER 2018. Jurnal Meteorologi Klimatologi Dan Geofisika, 6(1), 1–12. Retrieved from https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/109